Reciprocal Lattice to sc Lattice Simple Cubic

The primitive translation vectors of a simple cubic lattice may be taken as
the set

A

a, =ax ; a, =ay ; a; = az . (27a)

Here X, y, z are orthogonal vectors of unit length. The volume of the cell is
a; - a; X az = ¢°. The primitive translation vectors of the reciprocal lattice are
found from the standard prescription (13):

b, = 2n/a)x ; b, = (27/a)y ; b, = (27/a)z . (27b)

Here the reciprocal lattice is itself a simple cubic lattice, now of lattice
constant 27/a.

The boundaries of the first Brillouin zones are the planes normal to the six
reciprocal lattice vectors £b;, £b,, *b; at their midpoints:

+2b, = *(m/a)x ; +5by = *(m/a)y ; +2by = *(wla)z . (28)

The six planes bound a cube of edge 27/a and of volume (27/a)®; this cube is
the first Brillouin zone of the sc crystal lattice.




Reciprocal Lattice to bee Lattice

The primitive translation vectors of the bec lattice (Fig. 12) are

A A

a1=éa(—i+§'+%); a2=éa(x—y+2); a;=zaXx+ty—1z), (29)

b | =

where a is the side of the conventional cube and X, y, z are orthogonal unit
vectors parallel to the cube edges. The volume of the primitive cell is

V= la; *ay X ay] =30 . (30)

Figure 12 Primitive basis vectors
of the body-centered cubic lattice.




The primitive translations of the reciprocal lattice are defined by (13). We
have, using (28),

b, = 2n/a)(y + z) ; b, = 2w/a)(x + z) ; b; = 2@/a)x +y) . (31)

Note by comparison with Fig. 14 (p. 37) that these are just the primitive
vectors of an fec lattice, so that an fcc lattice is the reciprocal lattice of the bece

lattice.

The general reciprocal lattice vector is, for integral vy, vy, vs,

G = Ulbl 2 'U2b2 g U3b3 — (277'/(1)[(1)2 o7t 1)3);( + (Ul =1 03)5\’ + (Ul = 1)2)2] é (32)

The shortest G’s are the following 12 vectors, where all choices of sign are
independent:

(2m/a)(xy £ Z) ; (27/a)(xx + Z) ; (2m/a)(xx = y) . (33)

One primitive cell of the reciprocal lattice is the parallelepiped described
by the by, by, b; defined by (31). The volume of this cell in reciprocal space
is b, - by X by = 2(27/a)’>. The cell contains one reciprocal lattice point,
because each of the eight corner points is shared among eight parallelepipeds.
Each parallelepiped contains one-eighth of each of eight corner points.




In solid state physics we take the central (Wigner-Seitz) cell of the recipro-
cal lattice as the first Brillouin zone. Each such cell contains one lattice point at
the central point of the cell. This zone (for the bece lattice) is bounded by the
planes normal to the 12 vectors of Eq. (32) at their midpoints. The zone is a
regular 12-faced solid, a rhombic dodecahedron, as shown in Fig. 13. The
vectors from the origin to the center of each face are

(mla)(=$ = 2) ; (mla)(£% = 2) ; (mla)(=x £ §) . (33)

All choices of sign are independent, giving 12 vectors.

Rhombic dodecahedron
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Figure 13 First Brillouin zone of the body-
centered cubic lattice. The figure is a regular
rhombic dodecahedron.




Rhombic Dodecahedron
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The long diagonal of each face is exactly V2 times the length of the short
diagonal, so that the acute angles on each face measure arc Cos(1/3), or
approximately 70.53"



Reciprocal Lattice to fcc Lattice
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Figure 14 Primitive basis vectors of the face-centered cubic lattice.



Reciprocal Lattice to fcc Lattice

The primitive translation vectors of the fcc lattice of F ig. 14 are

a=saf+2); a=—ak+2); a,=ia&+9) . (34)
& 2 2
The volume of the primitive cell is

V= lal'a‘?‘anl:‘élIaB : (35)

The primitive translation vectors of the lattice reciprocal to the fec
lattice are

by = Qma)E +§—2) .



These are primitive translation vectors of a bec lattice, so that the bece lattice is

reciprocal to the fec lattice. The volume of the primitive cell of the reciprocal
lattice is 4(27/a).
The shortest G’s are the eight vectors:

2m/a)(xx+ty*7Z) . (37)

The boundaries of the central cell in the reciprocal lattice are determined
for the most part by the eight planes normal to these vectors at their
midpoints. But the corners of the octahedron thus formed are cut by the
planes that are the perpendicular bisectors of six other reciprocal lattice
vectors:

(2m/a)(*£2x) (2m/a)(£2y) ; (27/a)(+2Z) . (38)

Note that (27/a)(2X) is a remprocal lattice vector because it is equal to b, + b,.

The first Brillouin zone is the smallest bounded volume about the origin, the
truncated octahedron shown in Fig. 15. The six planes bound a cube of edge
47r/a and (before truncation) of volume (47/a)°.
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Figure 15  Brillouin zones of
the face-centered cubic lattice.
The cells are in reciprocal space,
and the reciprocal lattice is body
centered.



FOURIER ANALYSIS OF THE BASIS

When the diffraction condition Ak = G of Eq. (21) is satisfied, the scatter-
ing amplitude (18) for a crystal of N cells may be written as

Fo =N dV n(r) exp(—iG *r) = NS¢ . (39)
cell

The quantity S¢ is called the structure factor and is defined as an integral
over a single cell, with r = 0 at one corner.

Often it is useful to write the electron concentration n(r) as the super-
position of electron concentration functions n; i '
of the cell. If r; is the vector to the center of atom j, then the function
n(r — r;) defines the contribution of that atom to the electron concentration
at r. The total electron concentration at r due to all atoms in the single cell is
the sum

n(r) = > nr —r) (40)

over the s atoms of the basis. The decomposition of n(r) is not unique, for we
cannot always say how much charge density is associated with each atom. This
is not an important difficulty.




The structure factor defined by (39) may now be written as integrals over
the s atoms of a cell:

= ; Jadv nj(l' - I}) eXp(—iG ‘r)

(41)
=2exp( den ) exp(—iG * p) ,
j
where p = r — r;, We now define the atomic form factor as
f; = 1 dV np) exp(—iG - p) , (42)

integrated over all space. If n(p) is an atomic property, ]5 is an atomic property.

We combine (41)and (42) to obtain the structure factor of the basis in
the form

- 2]‘]' exp(—iG ' ;) . (43)




The usual form of this result follows on writing for atom j:

r; =xa; +ya, +za; , (44)

as in (1.2). Then, for the reflection labelled by v;, v, v5, we have

G - 1; = (v1b; + v5by + v3b;) * (xja; + yja, + Za3)

- 27T<'lej + U2yj + UGZJ) >

so that (43) becomes

Sc(v1v503) = 2 f; exp[—i2m(vx; + vgy; + vxz))] . (46)
j

The structure factor S need not be real because the scattered intensity will
involve S*S, where S* is the complex conjugate of S so that $*S is real.



At a zero of S the scattered intensity will be zero, even though G
IS a perfectly good reciprocal lattice vector. What happens if we
choose the cell in another way, as a conventional cell instead of a
primitive cell, for example? The basis is changed, but in such a way
that the physical scattering is unchanged. Thus for two choices, 1
and 2, it is not hard to satisfy yourself from (39) that

N, (cell) x S, (basis) = N, (cell) X S, (basis)




Structural Factor of the bcc Lattice

The bcc basis referred to the cubic cell has identical atoms at x;, = Yy, =
z1 = 0and atx, = y, = 2, =é . Thus (46) becomes

S(v1003) = f{1 + exp[—imr(v, + vy + v3)]} , (47)

where f is the form factor of an atom. The value of S is zero whenever
the exponential has the value —1, which is whenever the argument
is —i7 X (odd integer). Thus we have

S=0 when v; + v, + v3 = odd integer ;
S =2f when v; + v, + v3 = even integer .

Metallic sodium has a bee structure. The diffraction pattern does not con-
tain lines such as (100), (300), (111), or (221), but lines such as (200), (110), and
(222) will be present; here the indices (v,0,05) are referred to a cubic cell.
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Figure 16 Explanation of the absence of a (100) reflection from a body-centered cubic lattice.

The phase difference between successive planes is 7, so that the reflected amplitude from two
adjacent planesis 1 + e =1—1=0.



Structural Factor of the fcc Lattice

The basis of the fcc structure referred to the cubic cell has identical atoms
at 000; 033; 503; 330. Thus (46) becomes

S(v10503) = f[l + expl —im(vy + v3)] + exp| —im(v; + vy)] (48)
+ exp[—im(v, + 02)]} -

If all indices are even integers, S = 4f; similarly if all indices are odd integers.
But if only one of the integers is even, two of the exponents will be odd multi-
ples of —imr and S will vanish. If only one of the integers is odd, the same argu-

ment applies and S will also vanish. Thus in the fcc lattice no reflections can
occur for which the indices are partly even and partly odd.




NaCl
KCI

Figure 17 We may construct the sodium chloride crys-
tal structure by arranging Na™ and Cl~ ions alternately
at the lattice points of a simple cubic lattice. In the crys-
tal each ion is surrounded by six nearest neighbors of the
opposite charge. The space lattice is fcc, and the basis
has one CI~ ion at 000 and one Na™ ion at 333. The figure
shows one conventional cubic cell. The ionic diameters
here are reduced in relation to the cell in order to clarify
the spatial arrangement.
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e K+ is at (0,0,0), and
Cl-isat (1/2, 1/2, 1/2).
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Figure 17 Comparison of x-ray reflections from KCI

and KBr powders. In KCI the numbers of electrons
of K* and CI” ions are equal. The scattering ampli-
tudes f(K*) and f(Cl™) are almost exactly equal, so
that the crystal looks to x-rays as if it were a
monatomic simple cubic lattice of lattice constant

a/2. Only even integers occur in the reflection indices

(111) when these are based on a cubic lattice of lattice con-

(420) (400) (222)

stant a. In KBr the form factor of Br™ is quite differ-

ent to that of K*, and all reflections of the fcc
lattice are present. (Courtesy of R. van Nordstrand.)
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Atomic Form Factor

In the expression (46) for the structure factor, there occurs the quantity f,,
which is a measure of the scattering power of the jth atom in the unit cell. The
value of f involves the number and distribution of atomic electrons, and the
wavelength and angle of scattering of the radiation. We now give a classical
calculation of the scattering factor.

The scattered radiation from a single atom takes account of interference
effects within the atom. We defined the form factor in (42):

)5- = [dV n,(r) exp(—iG *r) , (49)

with the integral extended over the electron concentration associated with a
single atom. Let r make an angle @ with G; then G * r = Gr cos a. If the elec-
tron distribution is spherically symmetric about the origin, then

f; =2 [ dr+* d(cos a) n(r) exp(—iGr cos a)

ez‘Gr _ e—iGr
= 27 [ dr rznj(r) . Cr ,




after integration over d(cos a) between —1 and 1. Thus the form factor is

given by

(50)

If the same total electron density were concentrated at r = 0, only Gr = 0
would contribute to the integrand. In this limit (sin Gr)/Gr = 1, and

]S- =47 [ dr nj(r)r‘2 =7 , (51)

the number of atomic electrons. Therefore f is the ratio of the radiation ampli-
tude scattered by the actual electron distribution in an atom to that scattered
by one electron localized at a point. In the forward direction G = 0, and f
reduces again to the value Z.

The overall electron distribution in a solid as seen in x-ray diffraction is
fairly close to that of the appropriate free atoms. This statement does not
mean that the outermost or valence electrons are not redistributed somewhat
in forming the solid; it means only that the x-ray reflection intensities are
represented well by the free atom values of the form factors and are not very

sensitive to small redistributions of the electrons.




As an example, Batterman and co-workers find agreement within 1 per-
cent in a comparison of the x-ray intensities of Bragg reflections of metallic iron,
copper, and aluminum with the theoretical free atom values from wavefunction
calculations. The results for aluminum are shown in Fig. 18.

There have been many attempts to obtain direct x-ray evidence about the

actual electron distribution in a covalent chemical bond, particularly in crystals
having the diamond structure.
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Figure 18 Absolute experimental atomic scattering factors for metallic aluminum, after Bat-
terman, Chipman, and DeMarco. Each observed reflection is labeled. No reflections occur for
indices partly even and partly odd, as predicted for an fcc crystal.
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